
CMI-HIMR SUMMER SCHOOL: EXERCISES

JOHN VOIGHT

1. Lecture 1: over finite fields

Problem 1.1.

(a) Describe an efficient algorithm that takes as input an irreducible polynomial f(T ) ∈
Z[T ] and decides if f(T ) is a cyclotomic polynomial (i.e., if f(T ) is the minimal
polynomial of a primitive root of unity).

(b) How many ways can you compute f⊗r(T ), given f(T ) ∈ 1 +TZ[T ]? What way is the
most efficient (in theory or in practice)?

Problem 1.2. In each part of this exercise, the polynomial c(T ) is the (inverse) characteristic
polynomial of Frobenius for an abelian variety A over Fq. For each part, compute:

• the degree k = [Fqk : Fq] of the minimal extension such that all geometric endomor-
phisms of A are defined over Fqk , i.e., End(Aal) = End(AF

qk
);

• the structure of the endomorphism algebras End(AF
qd

)Q for all d | k.

(i) c(T ) = 1− 7T + 22T 2 − 35T 3 + 25T 4.
(ii) c(T ) = 1− 2T + 2T 2.

(iii) c(T ) = 1 + T 2 + 9T 4

(iv) c(T ) = 1− 4T 2 + 16T 4

Check your work at http://abvar.lmfdb.xyz/Variety/Abelian/Fq/. What is the most
exotic endomorphism algebra you can find? (And please share any comments you have on
the display—or anything else!)

Do you notice a feature in common between (c) and (d) that generalizes?

Problem 1.3. Let A be an abelian variety over Fq and let c(T ) ∈ 1 + TZ[T ] be the
characteristic polynomial of Frobenius. Factor

c(T ) =
t∏

i=1

hi(T )mi ∈ Q[T ]

with each hi(T ) irreducible. Show that

dimQ End(A)Q =
t∑

i=1

m2
i deg hi(T ).

[Hint: Factoring c(T ) =
∏

i(1− ziT ), we have dimQ End(A)Q = #{(i, j) : zizj = q}.]

Date: 24–27 June 2019.
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2. Lecture 2: over complex numbers

Problem 2.1. At a terminal prompt on your laptop, ssh into toby via

ssh cmihimr@toby.dartmouth.edu

with password given to you in lecture.

(a) Confirm the numerical endomorphism algebra computed in lecture, as follows.

cmihimr@toby:~$ magma

[...]

> QQ := RationalsExtra(200);

> _<x> := PolynomialRing(QQ);

> X := HyperellipticCurve(x^5-x^4+4*x^3-8*x^2+5*x-1);

> B, desc := HeuristicEndomorphismAlgebra(X : Geometric := true);

> B;

[*

Associative Algebra of dimension 4 with base ring Rational

Field,

[ (1 0 0 0), (-1 0 0 1), (-1 1 0 -1), (0 0 1 1) ],

[ M_2 (RR) ]

*]

> desc;

[* [* [* II,

[ -1, 1 ],

2, 6, 1

*] *],

[ 1, 1 ],

[ M_2 (RR) ]

*]

> bl, Bquat := IsQuaternionAlgebra(B[1]);

> Discriminant(Bquat);

6

> Bquat;

Quaternion Algebra with base ring Rational Field,

defined by i^2 = 2, j^2 = -3/4

> GeoEndoRep := GeometricEndomorphismRepresentation(X);

> F<w> := BaseRing(GeoEndoRep[1][1]);

> F;

Number Field with defining polynomial x^4 + 1 over the Rational Field

> GeoEndoRep;

[...]

(b) What is the numerical endomorphism algebra of the curve y2 = x5 + x3 + x? [Hint:
this is the curve with LMFDB label 9216.a.36864.1.]

(c) Try some other examples at https://github.com/edgarcosta/endomorphisms/blob/
master/examples/Buttons.m.

Problem 2.2. Read section 43.4 and do exercise 43.1 in the book at http://quatalg.org.
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Problem 2.3. In this exercise, we explore the use of the lattice basis reduction algorithms
to recognize algebraic numbers and find linear relations among complex numbers.

Equip Rn with the standard inner (dot) product 〈 , 〉 and induced norm ‖ ‖2, the measure
of size. We consider finitely generated subgroups L ⊂ Rn, so L =

∑
i Zxi with xi ∈ Rn

linearly independent over R. We suppose that there is a black box (labelled “LLL”) that
returns short vectors (vectors of small norm) in L, and we don’t ask any questions right now
what is happening in the box.

Let a ∈ R be given to D decimal digits. Suppose that a is algebraic and satisfies a
polynomial f(x) ∈ Z[x] of degree d ≥ 1 (not necessarily monic) that we want to guess.
Consider the subgroup L ⊆ Rd+2 with Z-span the rows of the matrix A ∈ Mat(d+1)×(d+2)(Z)
whose first (d + 1) × (d + 1) submatrix is the identity matrix and whose last column has
entries

10D, b10Dac, b10Da2c, . . . , b10Dadc.
Let c = (c0, c1, . . . , cd, cd+1) ∈ L be a short vector returned by the black box.

(a) Let f(x) = c0 + c1x + · · · + cdx
d. Show (without working too hard!) that f(a) ≈

cd+1/10D is small; conclude f(x)/cd is a good candidate for the minimal polynomial
of a.

(b) Generalize the above procedure to work for a ∈ C.
(c) Generalize the above procedure to take as input z1, . . . , zd ∈ C and gives as output

small c1, . . . , cd ∈ Z such that
∑d

i=1 cizi is small.
(d) Interpret the previous part as computing short vectors in the integer (row) kernel of

a matrix P ∈ Matd×1(C), and generalize this to work for arbitrary P ∈ Matd×e(C).
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3. Lecture 3: over number fields

Problem 3.1. Let X : y2 = f(x) be a nice hyperelliptic curve over a number field F of
genus g (so that deg f(x) = 2g + 1, 2g + 2), and let A := Jac(X) be its Jacobian. Then

ω1 :=
dx

y
, . . . , ωg := xg−1 dx

y

is an F -basis of regular differentials.
Let P0 = (0, y0) ∈ X(F ) be a non-Weierstrass point (i.e., y0 6= 0) and let

P̃0 = (x,
√
f(x)) ∈ X(F [[x]])

be the formal lift of P0, where
√
f(x) = y0 +O(x).

Let α ∈ End(A) and let M = (mi,j)i,j be the tangent representation of α with respect to
(the dual of) this basis. Recall the map

αX : X 99K Symg(X)

defined by

αX(P ) = {Q1, . . . , Qg} if α([P ]− [P0]) = [Q1 + · · ·+Qg − gP0].

Let
αX(P̃0) = {Q̃1, . . . , Q̃g}

and let xj = x(Q̃j). Then

(*)

g∑
j=1

xi−1
j

dxj√
f(xj)

=

g∑
j=1

mi,jx
j−1 dx√

f(x)
∈ F al[[x1/∞]] for all i = 1, . . . , g.

in the Puiseux series ring.
Carry out the computation of this lift in a simple example (avoiding Puiseux series), as

follows. Let f(x) = x5 + x+ 1 and P0 = (0, 1).

(a) To warm up, compute P̃0 = (x,
√
f(x)) = (x, 1 +O(x)) to order O(x3).

(b) Consider α = −2 (the endomorphism given by multiplication by −2), with M =(
−2 0
0 −2

)
. Writing

xj = cj,1x+O(x2)

for j = 1, 2, plug into (*) and solve for cj,1, then repeat to compute xj to order O(x3).
[What unusual thing happens for α = 2?]

(c) Continuing in this way, we can fit a divisor. Confirm this and check your work:

cmihimr@toby:~$ magma

[...]

> _<x> := PolynomialRing(Rationals());

> X := HyperellipticCurve(x^5+x+1);

> P0 := X ! [0,1];

> not IsWeierstrassPlace(Place(P0));

> M := Matrix(Rationals(), [[-2,0],[0,-2]]);

> bl, D := DivisorFromMatrixAmbientSplit(X, P0, X, P0, M);

> _<y1,y2,x1,x2> := Ambient(D);

> D;
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[...]

> InitializedIterator(X,X,M, 4);

[...]

Plug in your branches into this (g*d awful) divisor to confirm that it vanishes. Com-
pare this with CantorFromMatrixAmbientSplit.

(d) Perform multiplication by −2 directly on the Jacobian with a universal point and
compare with (c), as follows:

> KX<xX,yX> := FunctionField(X);

> XKX := ChangeRing(X,KX);

> PX := XKX![xX,yX];

> P0 := XKX![0,1];

> AKX := Jacobian(XKX);

> -2*AKX![PX,XKX!P0];

[...]

Problem 3.2. In this exercise, we verify that the curve

X : y2 + (x3 + x+ 1)y = −x5

529.a.529.1 (a model for the modular curve X0(23)) with A := Jac(X) has

End(A)Q = End(Aal)Q = Q(
√

5).

(a) Using Frobenius polynomials as in Lecture 1, show that End(A)Q is a field contained

in Q(
√

5).

> QQ := RationalsExtra(100);

> _<x> := PolynomialRing(QQ);

> _<T> := PolynomialRing(Integers());

> X := HyperellipticCurve([-x^5,x^3+x+1]);

> X;

Hyperelliptic Curve defined by y^2 + (x^3 + x + 1)*y = -x^5

over Rational Field

> EulerFactor(X,2);

4*T^4 + 2*T^3 + 3*T^2 + T + 1

[...]

(b) As in Lecture 2, compute that the numerical endomorphism algebra is indeed Q(
√

5),
endomorphisms all defined over Q, with numerical endomorphism α with represen-
tation

M =

(
−1 −1
−1 0

)
interpreting HeuristicEndomorphismLattice

(c) Verify this endomorphism following https://github.com/edgarcosta/endomorphisms/
blob/master/examples/puiseux/Talk1.m.

(d) Confirm this by a Hecke field computation as follows:

> S := CuspForms(23);

> BaseField(Newforms(S)[1][1]);

Number Field with defining polynomial $.1^2 + $.1 - 1 over the
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Rational Field
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Problem 3.3. Throughout this exercise, we use the following notation. Let X : y2 = f(x) be
a nice hyperelliptic curve over a number field F with deg f(x) odd, and let A := Jac(X) be
its Jacobian. Let Gal(f) be the Galois group of a splitting field of f realized as a permutation
group on the set R of roots of f .

Recall (from Exercise 2.1 of Adam Morgan’s course) that as GalF -modules we have an
isomorphism A(F al)[2] ' F2[R]Σ=0 where F2[S] is the permutation module on S over F2 and
Σ is the formal sum-of-coordinates map.

Suppose Gal(f) acts transitively on R (equivalently, f(x) is irreducible).

(a) Let S ≤ Gal(f) be the stabilizer subgroup fixing a chosen root, well-defined up to
conjugacy in Gal(f). Consider the ring

EndF2[Gal(f)](F2[R])

of F2-linear maps φ : F2[R]→ F2[R] that commute with the action of Gal(f). Show
that dimF2 EndF2[Gal(f)](F2[R]) is equal to the number of orbits of S acting onR. Con-
clude that Gal(f) acts 2-transitively onR if and only if dimF2 EndF2[Gal(f)](F2[R]) = 2.
[Hint: any such φ is determined by where it sends the chosen root.]

(b) Observe that the restriction of End(A) acting on A(F al)[2] is isomorphic as a ring to
End(A)⊗ F2

∼= End(A)/2 End(A).
(c) Show that if Gal(f) acts 2-transitively on R then End(A) ' Z.

Let K ⊇ F be the minimal (finite Galois) extension such that End(AK) = End(Aal).
The group Gal(K |F ) acts faithfully on B := End(Aal)Q by Q-linear automorphisms, so
Gal(K |F ) ↪→ AutQ(B) as groups.

(d) Suppose deg f(x) = p ≥ 3 is prime and Gal(f) ∼= Cp oCp−1 is the affine linear group
of order p(p − 1). Suppose also that B is a quadratic field (over Q). Prove that

K = F (
√
d), where d = disc(f) is the discriminant of f . [Hint: consider the action

of GalQ(
√
d) on R.]

(e) For each of the following polynomials, compute End(Aal)Q and its field of definition
using (d), and then confirm this using a numerical or rigorous computation:
(i) f(x) = x5 − 14x3 − 84x2 + 81x− 28
(ii) f(x) = x5 − 5x3 + 5x− 4

(iii) f(x) = x5 − 4x3 − 46x2 − 44x− 194
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4. Lecture 4: classification

Problem 4.1. List all possibilities for the R-algebra End(A)⊗ZR if A is an abelian surface
over a number field. Find an example of as many of these possibilities as you can find in the
LMFDB.

Problem 4.2. Do Exercise 3.7 in the book at http://quatalg.org.

Problem 4.3. Do Exercise 8.11.
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