CMI-HIMR SUMMER SCHOOL: EXERCISES

JOHN VOIGHT

1. Lecture 1: over finite fields

Problem 1.1.

- (a) Describe an efficient algorithm that takes as input an irreducible polynomial $f(T) \in \mathbb{Z}[T]$ and decides if f(T) is a cyclotomic polynomial (i.e., if f(T) is the minimal polynomial of a primitive root of unity).
- (b) How many ways can you compute $f^{\otimes r}(T)$, given $f(T) \in 1 + T\mathbb{Z}[T]$? What way is the most efficient (in theory or in practice)?

Problem 1.2. In each part of this exercise, the polynomial c(T) is the (inverse) characteristic polynomial of Frobenius for an abelian variety A over \mathbb{F}_q . For each part, compute:

- the degree $k = [\mathbb{F}_{q^k} : \mathbb{F}_q]$ of the minimal extension such that all geometric endomorphisms of A are defined over \mathbb{F}_{q^k} , i.e., $\operatorname{End}(A^{\operatorname{al}}) = \operatorname{End}(A_{\mathbb{F}_{q^k}})$;
- the structure of the endomorphism algebras $\operatorname{End}(A_{\mathbb{F}_{q^d}})_{\mathbb{Q}}$ for all $d \mid k$.
- (i) $c(T) = 1 7T + 22T^2 35T^3 + 25T^4$.
- (ii) $c(T) = 1 2T + 2T^2$.
- (iii) $c(T) = 1 + T^2 + 9T^4$
- (iv) $c(T) = 1 4T^2 + 16T^4$

Check your work at http://abvar.lmfdb.xyz/Variety/Abelian/Fq/. What is the most exotic endomorphism algebra you can find? (And please share any comments you have on the display—or anything else!)

Do you notice a feature in common between (c) and (d) that generalizes?

Problem 1.3. Let A be an abelian variety over \mathbb{F}_q and let $c(T) \in 1 + T\mathbb{Z}[T]$ be the characteristic polynomial of Frobenius. Factor

$$c(T) = \prod_{i=1}^{t} h_i(T)^{m_i} \in \mathbb{Q}[T]$$

with each $h_i(T)$ irreducible. Show that

$$\dim_{\mathbb{Q}} \operatorname{End}(A)_{\mathbb{Q}} = \sum_{i=1}^{t} m_i^2 \deg h_i(T).$$

[Hint: Factoring $c(T) = \prod_i (1 - z_i T)$, we have $\dim_{\mathbb{Q}} \operatorname{End}(A)_{\mathbb{Q}} = \#\{(i, j) : z_i z_j = q\}$.]

Date: 24–27 June 2019.

2. Lecture 2: over complex numbers

Problem 2.1. At a terminal prompt on your laptop, ssh into toby via

ssh cmihimr@toby.dartmouth.edu

with password given to you in lecture.

(a) Confirm the numerical endomorphism algebra computed in lecture, as follows.

```
cmihimr@toby:~$ magma
[...]
> QQ := RationalsExtra(200);
> _<x> := PolynomialRing(QQ);
> X := HyperellipticCurve(x^5-x^4+4*x^3-8*x^2+5*x-1);
> B, desc := HeuristicEndomorphismAlgebra(X : Geometric := true);
> B;
[*]
    Associative Algebra of dimension 4 with base ring Rational
    Field.
    [(1 \ 0 \ 0), (-1 \ 0 \ 0 \ 1), (-1 \ 1 \ 0 \ -1), (0 \ 0 \ 1 \ 1)],
    [ M_2 (RR) ]
*]
> desc;
[* [* [* II,
        [-1, 1],
        2, 6, 1
    *] *],
    [1, 1],
    [ M_2 (RR) ]
*]
> bl, Bquat := IsQuaternionAlgebra(B[1]);
> Discriminant(Bquat);
6
> Bquat;
Quaternion Algebra with base ring Rational Field,
defined by i^2 = 2, j^2 = -3/4
> GeoEndoRep := GeometricEndomorphismRepresentation(X);
> F<w> := BaseRing(GeoEndoRep[1][1]);
> F;
Number Field with defining polynomial x^4 + 1 over the Rational Field
> GeoEndoRep;
[...]
```

- (b) What is the numerical endomorphism algebra of the curve $y^2 = x^5 + x^3 + x$? [Hint: this is the curve with LMFDB label 9216.a.36864.1.]
- (c) Try some other examples at https://github.com/edgarcosta/endomorphisms/blob/ master/examples/Buttons.m.

Problem 2.2. Read section 43.4 and do exercise 43.1 in the book at http://quatalg.org.

Problem 2.3. In this exercise, we explore the use of the lattice basis reduction algorithms to recognize algebraic numbers and find linear relations among complex numbers.

Equip \mathbb{R}^n with the standard inner (dot) product \langle , \rangle and induced norm $|| ||^2$, the measure of size. We consider finitely generated subgroups $L \subset \mathbb{R}^n$, so $L = \sum_i \mathbb{Z} x_i$ with $x_i \in \mathbb{R}^n$ linearly independent over \mathbb{R} . We suppose that there is a black box (labelled "LLL") that returns short vectors (vectors of small norm) in L, and we don't ask any questions right now what is happening in the box.

Let $a \in \mathbb{R}$ be given to D decimal digits. Suppose that a is algebraic and satisfies a polynomial $f(x) \in \mathbb{Z}[x]$ of degree $d \geq 1$ (not necessarily monic) that we want to guess. Consider the subgroup $L \subseteq \mathbb{R}^{d+2}$ with \mathbb{Z} -span the rows of the matrix $A \in \operatorname{Mat}_{(d+1)\times(d+2)}(\mathbb{Z})$ whose first $(d+1) \times (d+1)$ submatrix is the identity matrix and whose last column has entries

$$10^D$$
, $\lfloor 10^D a \rfloor$, $\lfloor 10^D a^2 \rfloor$, ..., $\lfloor 10^D a^d \rfloor$.

Let $c = (c_0, c_1, \ldots, c_d, c_{d+1}) \in L$ be a short vector returned by the black box.

- (a) Let $f(x) = c_0 + c_1 x + \cdots + c_d x^d$. Show (without working too hard!) that $f(a) \approx c_{d+1}/10^D$ is small; conclude $f(x)/c_d$ is a good candidate for the minimal polynomial of a.
- (b) Generalize the above procedure to work for $a \in \mathbb{C}$.
- (c) Generalize the above procedure to take as input $z_1, \ldots, z_d \in \mathbb{C}$ and gives as output small $c_1, \ldots, c_d \in \mathbb{Z}$ such that $\sum_{i=1}^d c_i z_i$ is small.
- (d) Interpret the previous part as computing short vectors in the integer (row) kernel of a matrix $P \in \operatorname{Mat}_{d \times 1}(\mathbb{C})$, and generalize this to work for arbitrary $P \in \operatorname{Mat}_{d \times e}(\mathbb{C})$.

3. Lecture 3: over number fields

Problem 3.1. Let $X: y^2 = f(x)$ be a nice hyperelliptic curve over a number field F of genus g (so that deg f(x) = 2g + 1, 2g + 2), and let A := Jac(X) be its Jacobian. Then

$$\omega_1 := \frac{\mathrm{d}x}{y}, \dots, \omega_g := x^{g-1} \frac{\mathrm{d}x}{y}$$

is an *F*-basis of regular differentials.

Let $P_0 = (0, y_0) \in X(F)$ be a non-Weierstrass point (i.e., $y_0 \neq 0$) and let

$$\widetilde{P_0} = (x, \sqrt{f(x)}) \in X(F[[x]])$$

be the formal lift of P_0 , where $\sqrt{f(x)} = y_0 + O(x)$.

Let $\alpha \in \text{End}(A)$ and let $M = (m_{i,j})_{i,j}$ be the tangent representation of α with respect to (the dual of) this basis. Recall the map

$$\alpha_X \colon X \dashrightarrow \operatorname{Sym}^g(X)$$

defined by

$$\alpha_X(P) = \{Q_1, \dots, Q_g\}$$
 if $\alpha([P] - [P_0]) = [Q_1 + \dots + Q_g - gP_0]$.

Let

$$\alpha_X(\widetilde{P_0}) = \{\widetilde{Q_1}, \dots, \widetilde{Q_g}\}\$$

and let $x_j = x(\widetilde{Q_j})$. Then

(*)
$$\sum_{j=1}^{g} x_j^{i-1} \frac{\mathrm{d}x_j}{\sqrt{f(x_j)}} = \sum_{j=1}^{g} m_{i,j} x^{j-1} \frac{\mathrm{d}x}{\sqrt{f(x)}} \in F^{\mathrm{al}}[[x^{1/\infty}]] \quad \text{for all } i = 1, \dots, g.$$

in the Puiseux series ring.

Carry out the computation of this lift in a simple example (avoiding Puiseux series), as follows. Let $f(x) = x^5 + x + 1$ and $P_0 = (0, 1)$.

- (a) To warm up, compute $\widetilde{P_0} = (x, \sqrt{f(x)}) = (x, 1 + O(x))$ to order $O(x^3)$.
- (b) Consider $\alpha = -2$ (the endomorphism given by multiplication by -2), with M = $\begin{pmatrix} -2 & 0\\ 0 & -2 \end{pmatrix}$. Writing

$$x_j = c_{j,1}x + O(x^2)$$

for j = 1, 2, plug into (*) and solve for $c_{j,1}$, then repeat to compute x_j to order $O(x^3)$. [What unusual thing happens for $\alpha = 2$?]

(c) Continuing in this way, we can fit a divisor. Confirm this and check your work:

cmihimr@toby:~\$ magma [...] > _<x> := PolynomialRing(Rationals()); > X := HyperellipticCurve(x^5+x+1); > PO := X ! [0,1]; > not IsWeierstrassPlace(Place(P0)); > M := Matrix(Rationals(), [[-2,0],[0,-2]]); > bl, D := DivisorFromMatrixAmbientSplit(X, P0, X, P0, M); > _<y1,y2,x1,x2> := Ambient(D); > D; 4

```
[...]
> InitializedIterator(X,X,M, 4);
[...]
```

Plug in your branches into this (g*d awful) divisor to confirm that it vanishes. Compare this with CantorFromMatrixAmbientSplit.

(d) Perform multiplication by -2 directly on the Jacobian with a universal point and compare with (c), as follows:

```
> KX<xX,yX> := FunctionField(X);
> XKX := ChangeRing(X,KX);
> PX := XKX![xX,yX];
> P0 := XKX![0,1];
> AKX := Jacobian(XKX);
> -2*AKX![PX,XKX!P0];
[...]
```

Problem 3.2. In this exercise, we verify that the curve

 $X \colon y^2 + (x^3 + x + 1)y = -x^5$

529.a.529.1 (a model for the modular curve $X_0(23)$) with A := Jac(X) has

$$\operatorname{End}(A)_{\mathbb{Q}} = \operatorname{End}(A^{\operatorname{al}})_{\mathbb{Q}} = \mathbb{Q}(\sqrt{5}).$$

(a) Using Frobenius polynomials as in Lecture 1, show that $\operatorname{End}(A)_{\mathbb{Q}}$ is a field contained in $\mathbb{Q}(\sqrt{5})$.

```
> QQ := RationalsExtra(100);
> _<x> := PolynomialRing(QQ);
> _<T> := PolynomialRing(Integers());
> X := HyperellipticCurve([-x^5,x^3+x+1]);
> X;
Hyperelliptic Curve defined by y^2 + (x^3 + x + 1)*y = -x^5
over Rational Field
> EulerFactor(X,2);
4*T^4 + 2*T^3 + 3*T^2 + T + 1
[...]
```

(b) As in Lecture 2, compute that the numerical endomorphism algebra is indeed $\mathbb{Q}(\sqrt{5})$, endomorphisms all defined over \mathbb{Q} , with numerical endomorphism α with representation

$$M = \begin{pmatrix} -1 & -1 \\ -1 & 0 \end{pmatrix}$$

interpreting HeuristicEndomorphismLattice

- (c) Verify this endomorphism following https://github.com/edgarcosta/endomorphisms/ blob/master/examples/puiseux/Talk1.m.
- (d) Confirm this by a Hecke field computation as follows:

```
> S := CuspForms(23);
> BaseField(Newforms(S)[1][1]);
Number Field with defining polynomial $.1<sup>2</sup> + $.1 - 1 over the
```

Rational Field

Problem 3.3. Throughout this exercise, we use the following notation. Let $X: y^2 = f(x)$ be a nice hyperelliptic curve over a number field F with deg f(x) odd, and let A := Jac(X) be its Jacobian. Let Gal(f) be the Galois group of a splitting field of f realized as a permutation group on the set \mathcal{R} of roots of f.

Recall (from Exercise 2.1 of Adam Morgan's course) that as Gal_F -modules we have an isomorphism $A(F^{\mathrm{al}})[2] \simeq \mathbb{F}_2[\mathcal{R}]_{\Sigma=0}$ where $\mathbb{F}_2[S]$ is the permutation module on S over \mathbb{F}_2 and Σ is the formal sum-of-coordinates map.

Suppose $\operatorname{Gal}(f)$ acts transitively on \mathcal{R} (equivalently, f(x) is irreducible).

(a) Let $S \leq \text{Gal}(f)$ be the stabilizer subgroup fixing a chosen root, well-defined up to conjugacy in Gal(f). Consider the ring

$$\operatorname{End}_{\mathbb{F}_2[\operatorname{Gal}(f)]}(\mathbb{F}_2[\mathcal{R}])$$

of \mathbb{F}_2 -linear maps $\phi \colon \mathbb{F}_2[\mathcal{R}] \to \mathbb{F}_2[\mathcal{R}]$ that commute with the action of $\operatorname{Gal}(f)$. Show that $\dim_{\mathbb{F}_2} \operatorname{End}_{\mathbb{F}_2[\operatorname{Gal}(f)]}(\mathbb{F}_2[\mathcal{R}])$ is equal to the number of orbits of S acting on \mathcal{R} . Conclude that $\operatorname{Gal}(f)$ acts 2-transitively on \mathcal{R} if and only if $\dim_{\mathbb{F}_2} \operatorname{End}_{\mathbb{F}_2[\operatorname{Gal}(f)]}(\mathbb{F}_2[\mathcal{R}]) = 2$. [Hint: any such ϕ is determined by where it sends the chosen root.]

- (b) Observe that the restriction of $\operatorname{End}(A)$ acting on $A(F^{\operatorname{al}})[2]$ is isomorphic as a ring to $\operatorname{End}(A) \otimes \mathbb{F}_2 \cong \operatorname{End}(A)/2 \operatorname{End}(A)$.
- (c) Show that if $\operatorname{Gal}(f)$ acts 2-transitively on \mathcal{R} then $\operatorname{End}(A) \simeq \mathbb{Z}$.

Let $K \supseteq F$ be the minimal (finite Galois) extension such that $\operatorname{End}(A_K) = \operatorname{End}(A^{\operatorname{al}})$. The group $\operatorname{Gal}(K | F)$ acts faithfully on $B := \operatorname{End}(A^{\operatorname{al}})_{\mathbb{Q}}$ by \mathbb{Q} -linear automorphisms, so $\operatorname{Gal}(K | F) \hookrightarrow \operatorname{Aut}_{\mathbb{Q}}(B)$ as groups.

- (d) Suppose deg $f(x) = p \ge 3$ is prime and $\operatorname{Gal}(f) \cong C_p \rtimes C_{p-1}$ is the affine linear group of order p(p-1). Suppose also that B is a quadratic field (over \mathbb{Q}). Prove that $K = F(\sqrt{d})$, where $d = \operatorname{disc}(f)$ is the discriminant of f. [Hint: consider the action of $\operatorname{Gal}_{\mathbb{Q}(\sqrt{d})}$ on \mathcal{R} .]
- (e) For each of the following polynomials, compute $\operatorname{End}(A^{\operatorname{al}})_{\mathbb{Q}}$ and its field of definition using (d), and then confirm this using a numerical or rigorous computation:

(i)
$$f(x) = x^5 - 14x^3 - 84x^2 + 81x - 28$$

(ii)
$$f(x) = x^5 - 5x^3 + 5x - 4$$

(iii) $f(x) = x^5 - 4x^3 - 46x^2 - 44x - 194$

4. Lecture 4: Classification

Problem 4.1. List all possibilities for the \mathbb{R} -algebra $\operatorname{End}(A) \otimes_{\mathbb{Z}} \mathbb{R}$ if A is an abelian surface over a number field. Find an example of as many of these possibilities as you can find in the LMFDB.

Problem 4.2. Do Exercise 3.7 in the book at http://quatalg.org.

Problem 4.3. Do Exercise 8.11.